
Definition of a Distributed System

 A distributed system is

 a collection of independent computers
 that appears to its users

as a single coherent system.

... or ...
as a single system.

October 23, 08 9 Kangasharju: Distributed Systems

Examples of Distributed Systems

The Internet: net of nets
global access to “everybody”

 (data, service, other

actor; open ended)

 enormous size (open

ended)

 no single authority

 communication types

-  interrogation,

announcement,

stream

-  data, audio, video

intranet
ISP

desktop computer:

backbone

satellite link

server:
network link:

CoDoKi, Fig. 1.1

Figure 1.1 A typical portion of the Internet

October 23, 08 10 Kangasharju: Distributed Systems

Examples of Distributed Systems

Intranets (CoDoKi, Fig. 1.2)
 a single authority
 protected access

-  a firewall
-  total isolation

 may be worldwide
  typical services:

-  infrastructure services:
file service, name
service

-  application services

CoDoKi, Fig. 1.2

Figure 1.2 A typical intranet

October 23, 08 11 Kangasharju: Distributed Systems

Examples of Distributed Systems

Mobile and ubiquitous
computing (CoDoKi Fig 1.3)

  Portable devices

  laptops

  handheld devices

  wearable devices

  devices embedded in appliances

  Mobile computing

  Location-aware computing

  Ubiquitous computing, pervasive

computing
CoDoKi, Fig. 1.3

Figure 1.3 Portable and handheld devices in a distributed system

October 23, 08 12 Kangasharju: Distributed Systems

Mobile Ad Hoc -Networks

Mobile nodes come and go
No infrastructure
 - wireless data communication
 - multihop networking
 - long, nondeterministic dc delays

Problems, e.g.:
 - reliable multicast
 - group management

October 23, 08 13 Kangasharju: Distributed Systems

Resource Sharing and the Web

  Hardware resources (reduce

costs)

  Data resources (shared

usage of information)

  Service resources

  search engines

  computer-supported

cooperative working

  Service vs. server (node or

process)

File system of
www.w3c.org

Internet

Browsers Web servers

www.google.com

www.cdk3.net

www.w3c.org

Protocols

Activity.html

http://www.w3c.org/Protocols/Activity.html

http://www.google.com/search?q=kindberg

http://www.cdk3.net/

CoDoKi, Fig. 1.4

Mastering openness
•  HTML
•  URL
•  HTTP

Figure 1.4 Web servers and web browsers

October 23, 08 14 Kangasharju: Distributed Systems

Examples of Distributed Systems, 4

•  one single “system”
•  one or several autonomous subsystems
•  a collection of processors => parallel processing
 => increased performance, reliability, fault

 tolerance
•  partitioned or replicated data
 => increased performance, reliability, fault tolerance
Dependable systems, grid systems, enterprise systems

Distributed application

October 23, 08 15 Kangasharju: Distributed Systems

Why Distribution?

Sharing of information and services

Possibility to add components improves
availability

reliability, fault tolerance
performance

scalability

Facts of life: history, geography, organization

October 23, 08 16 Kangasharju: Distributed Systems

Goals and challenges for
distributed systems

Goals
 Making resources accessible
 Distribution transparency
 Openness
 Scalability
 Security
 System design requirements

October 23, 08 18 Kangasharju: Distributed Systems

Challenges for Making Resources Accessible
 Naming
 Access control
 Security
 Availability
 Performance
 Mutual exclusion of users, fairness
 Consistency in some cases

19 October 23, 08 Kangasharju: Distributed Systems

Challenges for Transparency
 The fundamental idea: a collection of

  independent, autonomous actors

 Transparency
 concealment of distribution =>

  user’s viewpoint: a single unified system

20 October 23, 08 Kangasharju: Distributed Systems

Transparencies

Transparency Description

Access Hide differences in data representation and how a resource is accessed

Location Hide where a resource is located (*)

Migration
Hide that a resource may move to another location (*)

(the resource does not notice)

Relocation
Hide that a resource may be moved to another location (*)

while in use (the others don’t notice)

Replication Hide that a resource is replicated

Concurrency Hide that a resource may be shared by several competitive users

Failure Hide the failure and recovery of a resource

Persistence Hide whether a (software) resource is in memory or on disk

(*) Notice the various meanings of ”location” : network address (several layers) ; geographical address

October 23, 08 21 Kangasharju: Distributed Systems

Challenges for Transparencies
  replications and migration cause need for ensuring

consistency and distributed decision-making
  failure modes
 concurrency
 heterogeneity

22 October 23, 08 Kangasharju: Distributed Systems

Figure 2.10
Omission and arbitrary failures

Class of failure
 Affects
 Description

Fail-stop
 Process
 Process halts and remains halted. Other processes may

detect this state.

Crash
 Process
 Process halts and remains halted. Other processes may

not be able to detect this state.

Omission
 Channel
 A message inserted in an outgoing message buffer never

arrives at the other end’s incoming message buffer.

Send-omission
 Process
 A process completes
send,
 but the message is not put

in its outgoing message buffer.

Receive-

omission

Process
 A message is put in a process’s incoming message

buffer, but that process does not receive it.

Arbitrary

(Byzantine)

Process or

channel

Process/channel exhibits arbitrary behaviour: it may

send/transmit arbitrary messages at arbitrary times,

commit omissions; a process may stop or take an

incorrect step.

October 23, 08 23 Kangasharju: Distributed Systems

Figure 2.11
Timing failures

Class of Failure
 Affects
 Description

Clock
 Process
 Process’s local clock exceeds the bounds on its

rate of drift from real time.

Performance
 Process
 Process exceeds the bounds on the interval

between two steps.

Performance
 Channel
 A message’s transmission takes longer than the

stated bound.

October 23, 08 24 Kangasharju: Distributed Systems

Failure Handling
 More components => increased fault rate
  Increased possibilities

 more redundancy => more possibilities for fault tolerance

 no centralized control => no fatal failure

  Issues
 Detecting failures

 Masking failures

 Recovery from failures

 Tolerating failures

 Redundancy

 New: partial failures

25 October 23, 08 Kangasharju: Distributed Systems

Concurrency
 Concurrency:

 Several simultaneous users => integrity of data

-  mutual exclusion

-  synchronization

-  ext: transaction processing in data bases

 Replicated data: consistency of information?

 Partitioned data: how to determine the state of the system?

 Order of messages?

 There is no global clock!

26 October 23, 08 Kangasharju: Distributed Systems

Consistency Maintenance
 Update ...
 Replication ...
 Cache consistency
 Failure ...
 Clock ...
 User interface

27 October 23, 08 Kangasharju: Distributed Systems

Heterogeneity
 Heterogeneity of

 networks

 computer hardware

 operating systems

 programming languages

  implementations of different developers

 Portability, interoperability
 Mobile code, adaptability (applets, agents)
 Middleware (CORBA etc)
 Degree of transparency? Latency? Location-based

services?

28 October 23, 08 Kangasharju: Distributed Systems

Challenges for Openness
 Openness facilitates

  interoperability, portability, extensibility, adaptivity

 Activities addresses
 extensions: new components

  re-implementations (by independent providers)

 Supported by
 public interfaces

 standardized communication protocols

29 October 23, 08 Kangasharju: Distributed Systems

Challenges for Scalability
 Scalability
  The system will remain effective when there is a
  significant increase in

 number of resources

 number of users

 The architecture and the implementation must allow it

 The algorithms must be efficient under the circumstances to

be expected

 Example: the Internet

30 October 23, 08 Kangasharju: Distributed Systems

Challenges: Scalability (cont.)
 Controlling the cost of physical resources
 Controlling performance loss
 Preventing software resources running out
 Avoiding performance bottlenecks
 Mechanisms (implement functions) & Policies (how to use

the mechanisms)
 Scaling solutions

 asyncronous communication, decreased messaging (e.g.,

forms)

 caching (all sorts of hierarchical memories: data is closer to

the user  no wait / assumes rather stable data!)

 distribution i.e. partitioning of tasks or information (domains)

(e.g., DNS)

31 October 23, 08 Kangasharju: Distributed Systems

Challenges for Security

  Security: confidentiality, integrity, availability

  Vulnerable components (Fig. 2.14)
  channels (links <–> end-to-end paths)
  processes (clients, servers, outsiders)

  Threats
  information leakage
  integrity violation
  denial of service
  illegitimate usage

 Current issues:

 denial-of-service attacks, security of mobile code, information flow;

open wireless ad-hoc environments

Communication channel

Copy of m

Process p Process q m

The enemy
m’

CoDoKi, Fig. 2.14

Figure 2.14 The enemy

October 23, 08 32 Kangasharju: Distributed Systems

Threats
 Threats to channels (Fig. 2.14)

 eavesdropping (data, traffic)
  tampering, replaying
 masquerading
 denial of service

 Threats to processes (Fig. 2.13)
 server: client’s identity; client: server’s

identity

 unauthorized access (insecure

access model)

 unauthorized information flow

(insecure flow model)

CoDoKi, Fig. 2.13
Figure 2.13 Objects and principals

Communication channel

Copy of m

Process p Process q m

The enemy
m’

CoDoKi, Fig. 2.14

Figure 2.14 The enemy

October 23, 08 33 Kangasharju: Distributed Systems

Defeating Security Threats
 Techniques

 cryptography

 authentication

 access control techniques

-  intranet: firewalls

-  services, objects: access control lists, capabilities

 Policies
 access control models

  lattice models

  information flow models

 Leads to: secure channels, secure processes, controlled
access, controlled flows

34 October 23, 08 Kangasharju: Distributed Systems

Environment challenges
 A distributed system:

 HW / SW components in different nodes

 components communicate (using messages)

 components coordinate actions (using messages)

 Distances between nodes vary
  in time: from msecs to weeks

  in space: from mm’s to Mm’s

  in dependability

 Autonomous independent actors (=> even independent
failures!)

No global clock
Global state information not possible

35 October 23, 08 Kangasharju: Distributed Systems

Challenges: Design Requirements
 Performance issues

  responsiveness

  throughput

  load sharing, load balancing

  issue: algorithm vs. behavior

 Quality of service
 correctness (in nondeterministic environments)

  reliability, availability, fault tolerance

 security

 performance

 adaptability

36 October 23, 08 Kangasharju: Distributed Systems

Where is the borderline between a
computer and distributed system?

Hardware Concepts
 Characteristics which affect the behavior of software

systems
 The platform

  the individual nodes (”computer”, ”processor”)

 communication between two nodes

 organization of the system (network of nodes)

  ... and its characteristics
 capacity of nodes

 capacity (throughput, delay) of communication links

  reliability of communication (and of the nodes)

  Which ways to distribute an application are feasible

38 October 23, 08 Kangasharju: Distributed Systems

Basic Organizations of a Node

1.6 Different basic organizations and memories in distributed computer
systems

October 23, 08 39 Kangasharju: Distributed Systems

Multiprocessors (1)

A bus-based multiprocessor. 1.7

Essential characteristics for software design
•  fast and reliable communication (shared memory)
 => cooperation at ”instruction level” possible
•  bottleneck: memory (especially the ”hot spots”)

October 23, 08 40 Kangasharju: Distributed Systems

Multiprocessors (2)

a) A crossbar switch b) An omega switching network 1.8

A possible bottleneck: the switch

October 23, 08 41 Kangasharju: Distributed Systems

Homogeneous Multicomputer Systems

a) Grid b) Hypercube 1-9

A new design aspect: locality at the network level

October 23, 08 42 Kangasharju: Distributed Systems

General Multicomputer Systems
 Hardware: see Ch1 (internet etc.)
 Loosely connected systems

 nodes: autonomous

 communication: slow and vulnerable

 => cooperation at ”service level”

 Application architectures
 multiprocessor systems: parallel computation

 multicomputer systems: distributed systems

  (how are parallel, concurrent, and distributed systems

different?)

43 October 23, 08 Kangasharju: Distributed Systems

Software Concepts

System Description Main Goal

DOS

Tightly-coupled operating system for

multiprocessors and homogeneous

multicomputers

Hide and manage

hardware resources

NOS
Loosely-coupled operating system for

heterogeneous multicomputers (LAN and WAN)

Offer local services to

remote clients

Middle-

ware

Additional layer atop of NOS implementing

general-purpose services

Provide distribution

transparency

DOS: Distributed OS; NOS: Network OS

October 23, 08 44 Kangasharju: Distributed Systems

History of distributed systems
 RPC by Birel &Nelson -84
 network operating systems, distributed operating systems,

distributed computing environments in mid-1990;
middleware referred to relational databases

 Distributed operating systems – ”single computer”
 Distributed process management

-  process lifecycle, inter-process communication, RPC,

messaging

 Distributed resource management

-  resource reservation and locking, deadlock detection

 Distributed services

-  distributed file systems, distributed memory, hierarchical

global naming

45 October 23, 08 Kangasharju: Distributed Systems

History of distributed systems
  late 1990’s distribution middleware well-known

 generic, with distributed services

 supports standard transport protocols and provides standard

API

 available for multiple hardware, protocol stacks, operating

systems

 e.g., DCE, COM, CORBA

 present middlewares for
 multimedia, realtime computing, telecom

 ecommerce, adaptive / ubiquitous systems

46 October 23, 08 Kangasharju: Distributed Systems

Misconceptions tackled
 The network is reliable
 The network is secure
 The network is homogeneous
 The topology does not change
 Latency is zero
 Bandwith is infinite
 Transport cost is zero
 There is one administrator
 There is inherent, shared knowledge

47 October 23, 08 Kangasharju: Distributed Systems

Multicomputer Operating Systems (1)

General structure of a multicomputer operating system 1.14

October 23, 08 48 Kangasharju: Distributed Systems

Multicomputer Operating Systems (2)

1.15 Alternatives for blocking and buffering in message passing.

October 23, 08 49 Kangasharju: Distributed Systems

Distributed Shared Memory Systems (1)

a)  Pages of address space

distributed among four

machines

b)  Situation after CPU 1

references page 10

c)  Situation if page 10 is

read only and replication

is used

October 23, 08 50 Kangasharju: Distributed Systems

Distributed Shared Memory Systems (2)

1.18 False sharing of a page between two independent processes.

October 23, 08 51 Kangasharju: Distributed Systems

Network Operating System (1)

General structure of a network operating system.

1-19

October 23, 08 52 Kangasharju: Distributed Systems

Network Operating System (2)

Two clients and a server in a network operating system.

1-20

October 23, 08 53 Kangasharju: Distributed Systems

Network Operating System (3)

1.21 Different clients may mount the servers in different places.

October 23, 08 54 Kangasharju: Distributed Systems

Software Layers
 Platform: computer & operating system & ..
 Middleware:

 mask heterogeneity of lower levels

  (at least: provide a homogeneous “platform”)

 mask separation of platform components

-  implement communication

-  implement sharing of resources

 Applications: e-mail, www-browsers, …

55 October 23, 08 Kangasharju: Distributed Systems

Positioning Middleware

General structure of a distributed system as middleware. 1-22

October 23, 08 56 Kangasharju: Distributed Systems

Middleware
 Operations offered by middleware

 RMI, group communication, notification, replication, … (Sun

RPC, CORBA, Java RMI, Microsoft DCOM, ...)

 Services offered by middleware
 naming, security, transactions, persistent storage, …

 Limitations
  ignorance of special application-level requirements

End-to-end argument:
 Communication of application-level peers at both ends is

required for reliability

57 October 23, 08 Kangasharju: Distributed Systems

Middleware

Distributed
application

Middleware API

Middle-
ware

Operating System API

 Operating system

commu-
nication

processing storage

Distributed
application

Middleware API

Middle-
ware

Operating System API

 Operating system

commu-
nication

processing storage

network

Host 1 Host 2

October 23, 08 58 Kangasharju: Distributed Systems

Middleware

Middleware is a class of software technologies designed to
help manage the complexity and heterogeneity inherent in

distributed systems. It is defined as a layer of software
above the operating system but below the application

program that provides a common programming
abstraction across a distributed system.

Bakken 2001: Encyclopedia entry

October 23, 08 59 Kangasharju: Distributed Systems

Middleware and Openness

 In an open middleware-based distributed system, the protocols used by

each middleware layer should be the same, as well as the interfaces

they offer to applications.

1.23

October 23, 08 60 Kangasharju: Distributed Systems

Comparison between Systems

Item
Distributed OS

Network OS
Middleware-based

OS Multiproc. Multicomp.

Degree of transparency Very High High Low High

Same OS on all nodes Yes Yes No No

Number of copies of OS 1 N N N

Basis for communication Shared memory Messages Files Model specific

Resource management Global, central Global, distributed Per node Per node

Scalability No Moderately Yes Varies

Openness Closed Closed Open Open

October 23, 08 61 Kangasharju: Distributed Systems

More examples on distributed
software architectures

Architectural Models
 Architectural models provide a high-level view of the

distribution of functionality between system components
and the interaction relationships between them

 Architectural models define
 components (logical components deployed at physical

nodes)

 communication

 Criteria
 performance

  reliability

 scalability, ..

63 October 23, 08 Kangasharju: Distributed Systems

Client-Server

  Client-server model: CoDoKi, Fig. 2.2

  Service provided by multiple

servers: Fig. 2.3

  Needed:

  name service

  trading/broker service

  browsing service

  Proxy servers and caches, Fig. 2.4

CoDoKi, Fig. 2.2 Figure 2.2 Clients invoke individual servers

CoDoKi, Fig. 2.3 Figure 2.3 A service provided by multiple servers

CoDoKi, Fig. 2.4

Figure 2.4 Web proxy server October 23, 08 64 Kangasharju: Distributed Systems

An Example Client and Server (1)

The header.h file used by the client and server.

October 23, 08 65 Kangasharju: Distributed Systems

An Example Client and Server (2)

A sample server.

October 23, 08 66 Kangasharju: Distributed Systems

An Example Client and Server (3)

1-27 b

A client using the server to copy a file.

October 23, 08 67 Kangasharju: Distributed Systems

Processing Level

 The general organization of an Internet search engine into three different layers 1-28

October 23, 08 68 Kangasharju: Distributed Systems

Multitiered Architectures (1)

Alternative client-server organizations. 1-29

October 23, 08 69 Kangasharju: Distributed Systems

Multitiered Architectures (2)

Client - server: generalizations

node 1 node 2
request

reply

node 3

node 4

A client: node 1
 server: node 2

A B

B client: node 2
 server: node 3

the concept is related
to communication
not to nodes

October 23, 08 70 Kangasharju: Distributed Systems

Multitiered Architectures (3)

An example of a server acting as a client. 1-30

October 23, 08 71 Kangasharju: Distributed Systems

Variations on the Client-Server model

  Mobile code

the service is provided using a procedure

  executed by a process in the server

node

  downloaded to the client and executed

locally Fig. 2.6

  push service: the initiator is the server

  Mobile agents

  “a running program” (code & data)

travels

  needed: an agent platform CoDoKi, Fig. 2.6 Figure 2.6 Web applets

October 23, 08 72 Kangasharju: Distributed Systems

Variations on the Client-Server model (cont.)

 Network computers
  “diskless workstations”
 needed code and data downloaded for execution

 Thin clients
  “PC”: user interface
 server: execution of computations (Fig. 2.7)
 example: Unix X-11 window system

Thin
Client

Application
Process

Network computer or PC Compute server

network

CoDoKi, Fig. 2.7 Figure 2.7 Thin clients and compute servers

October 23, 08 73 Kangasharju: Distributed Systems

Variations on the Client-Server model (cont.)
  Mobile devices and

spontaneous networks,
 ad hoc networks (Fig.
2.8)

  Needed
  easy connection to a

local network
  easy integration with

local services
  Problems

  limited connectivity
  security and privacy

  Discovery service
two interfaces:

registration, lookup

Internet
gateway

PDA

service
Music
service

 service Discovery

Alarm

Camera

Guests
devices Laptop TV/PC

Hotel wireless
network

Figure 2.8 Spontaneous networking in a hotel

October 23, 08 74 Kangasharju: Distributed Systems

Modern Architectures

An example of horizontal distribution of a Web service. 1-31

October 23, 08 75 Kangasharju: Distributed Systems

 Andrews paradigms:
filter: a generalization of producers and
 consumers

heartbeat

 probe echo

 Peer to peer

Other Architectures

CoDoKi, Fig. 2.5

October 23, 08 76 Kangasharju: Distributed Systems

